Barisan dan Deret

A. Aritmatika
1. Barisan Arimatika
download
Barisan aritmatika adalah sebuah barisan bilangan dimana setiap pasangan suku-suku yang berurutan memiliki selisih yang sama. contoh : 6,9,12,15,. Selisih bilangan pada barisan aritmatika disebut beda yang biasa disimbolkan dengan huruf b, untuk contoh diatas memiliki nilai beda 3. Dan bilangan yang menyusun suatu barisan disebut suku, dimana suku ke n dari suatu barisan disimbolkan dengan Un sehingga untuk suku ke 5 dari suatu barisan biasa disebut dengan U5. Khusus untuk suku pertama dari suatu barisan biasa disimbolkan dengan huruf a. 
Menentukan Rumus Suku ke-n suatu barisan
Pasangan suku-suku berurutan dari suatu barisan aritmatika mempunyai beda yang sama, maka
U2 = a + b
U3 = U2 + b = (a + b) + b = a + 2b
U4 = U3 + b = (a + 2b) + b = a + 3b
U5 = U4 + b = (a + 3b) + b = a + 4b
Berdasarkan pola tersebut, dapatkah sobat menentukan suku ke-7, suku ke-26 hingga suku ke-90? Dengan menggunakan pola diatas kita dapat mengetahui dengan mudah suku-suku tersebut.
U7 = a + 6b
U26 = a + 25b
U90 = a + 89b
Sehingga berdasarkan runtutan penjelasan diatas untuk suku ke-n dapat kita peroleh menggunakan rumus :
Un = a + (n – 1)b, untuk n bilangan asli

DERET ARITMATIKA

Yang dimaksud dengan deret aritmatika adalah penjumlahan dari semua anggota barisan aritmatika secara berurutan. Contoh dari deret aritmatika yaitu 7 + 10 + 13 + 16 + 19 + …
Misalnya kita ambil n suku pertama,  jika kita ingin menentukan hasil dari deret aritmatika sebagai contoh untuk 5 suku pertama dari contoh deret diatas. Bagaimana caranya?
7 + 10 + 13 + 16 + 19 = 65
Nah untuk 5 suku pertama, masih mungkin kita menghitung manual seperti diatas. Seandainya kita akan menentukan jumlah dari 100 suku pertama, apakah masih mungkin kita menghitung manual seperti itu. Walaupun bisa tetapi pastinya akan memakan waktu yang cukup lama. Nah kali ini akan kita tunjukkan cara menentukannya, sebagai contohnya untuk mennetukan jumlah 5 suku pertama dari contoh diatas.
Misalkan S5=7 + 10 + 13 + 16 + 19, sehingga
Walaupun dengan cara yang berbeda tetapi menunjukkan hasil yang sama yaitu 65. Perhatikan bahwa S5tersebut dapat dicari dengan mengalikan hasil penjumlahan suku pertama dan suku ke-5, dengan banyaknya suku pada barisan, kemudian dibagi dengan 2. Analogi dengan hasil ini, jumlah n suku pertama dari suatu barisan dapat dicari dengan rumus berikut:
Sn = (a + Un) × n : 2
Dikarenakan Un = a + (n – 1)b, sehingga  rumus di atas menjadi
Sn = (2a + (n – 1)b) × n : 2
B. Geometri
 Barisan geometri atau sering diistilahkan “barisan ukur” adalah barisan yang memenuhi sifat hasil bagi sebuah suku dengan suku sebelumnya yang berurutan adalah bernilai konstan. Misal barisan geometri tersebut adalah a,b, dan c maka c/b = b/a = konstan. Hasil bagi suku yang berdekatan tersebut disebut dengan rasio barisan geometri (r).
Rumus Suku ke-n dari barisan geometri dirumuskan
Un = arn-1
dengan a = suku awal dan r = rasio barisan geomteri


Deret geometri didefinisikan sebagai jumlah n buah suku pertama dari barisan geometri. Nilai dari n suku pertama dari sebuah barisan geometri dapat ditentukan dengan
  Sn = a + ar + ar2 + ar3 +… + arn-2 + arn-1
r Sn = ar + ar2 + ar3 +… + arn-2 + arn-1 + arn    (keduanya kita kurangkan)
———————————————————————————
Sn – rSn = a – arn
Sn (1-r) = a (1-rn)
Sn = a  (1-rn)/ (1-r)
dengan a = suku pertama dan r = rasio barisan geometri

Komentar

Postingan populer dari blog ini

Penjasorkes ( Bola Besar dan Bola Kecil )

Peran Indonesia Kerjasama dan Perdagangan Antar Negara

Agama Katolik (Bersahabat dengan Sesama yang Beragama dan Kepercayaan Lain)