Barisan dan Deret
A. Aritmatika
1. Barisan Arimatika
Barisan geometri atau sering diistilahkan “barisan ukur” adalah barisan yang memenuhi sifat hasil bagi sebuah suku dengan suku sebelumnya yang berurutan adalah bernilai konstan. Misal barisan geometri tersebut adalah a,b, dan c maka c/b = b/a = konstan. Hasil bagi suku yang berdekatan tersebut disebut dengan rasio barisan geometri (r).
Rumus Suku ke-n dari barisan geometri dirumuskan
Un = arn-1
dengan a = suku awal dan r = rasio barisan geomteri
1. Barisan Arimatika
Barisan aritmatika adalah sebuah barisan bilangan dimana setiap pasangan suku-suku yang berurutan memiliki selisih yang sama. contoh : 6,9,12,15,. Selisih bilangan pada barisan aritmatika disebut beda yang biasa disimbolkan dengan huruf b, untuk contoh diatas memiliki nilai beda 3. Dan bilangan yang menyusun suatu barisan disebut suku, dimana suku ke n dari suatu barisan disimbolkan dengan Un sehingga untuk suku ke 5 dari suatu barisan biasa disebut dengan U5. Khusus untuk suku pertama dari suatu barisan biasa disimbolkan dengan huruf a.
B. GeometriMenentukan Rumus Suku ke-n suatu barisanPasangan suku-suku berurutan dari suatu barisan aritmatika mempunyai beda yang sama, makaU2 = a + b
U3 = U2 + b = (a + b) + b = a + 2b
U4 = U3 + b = (a + 2b) + b = a + 3b
U5 = U4 + b = (a + 3b) + b = a + 4bBerdasarkan pola tersebut, dapatkah sobat menentukan suku ke-7, suku ke-26 hingga suku ke-90? Dengan menggunakan pola diatas kita dapat mengetahui dengan mudah suku-suku tersebut.U7 = a + 6b
U26 = a + 25b
U90 = a + 89bSehingga berdasarkan runtutan penjelasan diatas untuk suku ke-n dapat kita peroleh menggunakan rumus :Un = a + (n – 1)b, untuk n bilangan asli
DERET ARITMATIKA
Yang dimaksud dengan deret aritmatika adalah penjumlahan dari semua anggota barisan aritmatika secara berurutan. Contoh dari deret aritmatika yaitu 7 + 10 + 13 + 16 + 19 + …Misalnya kita ambil n suku pertama, jika kita ingin menentukan hasil dari deret aritmatika sebagai contoh untuk 5 suku pertama dari contoh deret diatas. Bagaimana caranya?7 + 10 + 13 + 16 + 19 = 65Nah untuk 5 suku pertama, masih mungkin kita menghitung manual seperti diatas. Seandainya kita akan menentukan jumlah dari 100 suku pertama, apakah masih mungkin kita menghitung manual seperti itu. Walaupun bisa tetapi pastinya akan memakan waktu yang cukup lama. Nah kali ini akan kita tunjukkan cara menentukannya, sebagai contohnya untuk mennetukan jumlah 5 suku pertama dari contoh diatas.Misalkan S5=7 + 10 + 13 + 16 + 19, sehinggaWalaupun dengan cara yang berbeda tetapi menunjukkan hasil yang sama yaitu 65. Perhatikan bahwa S5tersebut dapat dicari dengan mengalikan hasil penjumlahan suku pertama dan suku ke-5, dengan banyaknya suku pada barisan, kemudian dibagi dengan 2. Analogi dengan hasil ini, jumlah n suku pertama dari suatu barisan dapat dicari dengan rumus berikut:Sn = (a + Un) × n : 2Dikarenakan Un = a + (n – 1)b, sehingga rumus di atas menjadiSn = (2a + (n – 1)b) × n : 2
Barisan geometri atau sering diistilahkan “barisan ukur” adalah barisan yang memenuhi sifat hasil bagi sebuah suku dengan suku sebelumnya yang berurutan adalah bernilai konstan. Misal barisan geometri tersebut adalah a,b, dan c maka c/b = b/a = konstan. Hasil bagi suku yang berdekatan tersebut disebut dengan rasio barisan geometri (r).
Rumus Suku ke-n dari barisan geometri dirumuskan
Un = arn-1
dengan a = suku awal dan r = rasio barisan geomteri
Deret geometri didefinisikan sebagai jumlah n buah suku pertama dari barisan geometri. Nilai dari n suku pertama dari sebuah barisan geometri dapat ditentukan dengan
Sn = a + ar + ar2 + ar3 +… + arn-2 + arn-1
r Sn = ar + ar2 + ar3 +… + arn-2 + arn-1 + arn (keduanya kita kurangkan)
———————————————————————————
Sn – rSn = a – arn
Sn (1-r) = a (1-rn)
Sn = a (1-rn)/ (1-r)
dengan a = suku pertama dan r = rasio barisan geometri
r Sn = ar + ar2 + ar3 +… + arn-2 + arn-1 + arn (keduanya kita kurangkan)
———————————————————————————
Sn – rSn = a – arn
Sn (1-r) = a (1-rn)
Sn = a (1-rn)/ (1-r)
dengan a = suku pertama dan r = rasio barisan geometri
Komentar
Posting Komentar